preprocessing
          boxcox(method='mle')
  Applies the Box-Cox transformation to numeric columns in a panel DataFrame.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
method | 
          
                str
           | 
          
             The method used to determine the lambda parameter of the Box-Cox transformation. Supported methods: 
  | 
          
                'mle'
           | 
        
          coerce_dtypes(schema)
  Coerces the column datatypes of a DataFrame using the provided schema.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
schema | 
          
                Mapping[str, DataType]
           | 
          
             A dictionary-like object mapping column names to the desired data types.  | 
          required | 
          deseasonalize_fourier(sp, K, robust=False)
  Removes seasonality via residualized regression with Fourier terms.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
sp | 
          
                int
           | 
          
             Seasonal period.  | 
          required | 
K | 
          
                int
           | 
          
             Maximum order(s) of Fourier terms.
Must be less than   | 
          required | 
Note: part of this transformer uses sklearn under-the-hood: it is not pure Polars and lazy.
          detrend(freq, method='linear')
  Removes mean or linear trend from numeric columns in a panel DataFrame.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
freq | 
          
                str
           | 
          
             Offset alias supported by Polars.  | 
          required | 
method | 
          
                str
           | 
          
             If   | 
          
                'linear'
           | 
        
          diff(order, sp=1, fill_strategy=None)
  Difference time-series in panel data given order and seasonal period.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
order | 
          
                int
           | 
          
             The order to difference.  | 
          required | 
sp | 
          
                int
           | 
          
             Seasonal periodicity.  | 
          
                1
           | 
        
fill_strategy | 
          
                Optional[str]
           | 
          
             Strategy to fill nulls by. Nulls are not filled if None. Supported strategies include: ["backward", "forward", "mean", "zero"].  | 
          
                None
           | 
        
          impute(method)
  Performs missing value imputation on numeric columns of a DataFrame grouped by entity.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
method | 
          
                Union[str, int, float]
           | 
          
             The imputation method to use. Supported methods are: 
  | 
          required | 
          lag(lags, fill_strategy=None)
  Applies lag transformation to a LazyFrame.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
lags | 
          
                List[int]
           | 
          
             A list of lag values to apply.  | 
          required | 
fill_strategy | 
          
                Optional[str]
           | 
          
             Strategy to fill nulls by. Nulls are not filled if None. Supported strategies include: ["backward", "forward", "mean", "zero"].  | 
          
                None
           | 
        
          one_hot_encode(drop_first=False)
  Encode categorical features as a one-hot numeric array.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
drop_first | 
          
                bool
           | 
          
             Drop the first one hot feature.  | 
          
                False
           | 
        
Raises:
| Type | Description | 
|---|---|
                ValueError
           | 
          
             if X passed into   | 
        
          reindex(drop_duplicates=False)
  Reindexes the entity and time columns to have every possible combination of (entity, time).
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
drop_duplicates | 
          
                bool
           | 
          
             Defaults to False. If True, duplicates are dropped before reindexing.  | 
          
                False
           | 
        
          resample(freq, agg_method, impute_method)
  Resamples and transforms a DataFrame using the specified frequency, aggregation method, and imputation method.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
freq | 
          
                str
           | 
          
             Offset alias supported by Polars.  | 
          required | 
agg_method | 
          
                str
           | 
          
             The aggregation method to use for resampling. Supported values are 'sum', 'mean', and 'median'.  | 
          required | 
impute_method | 
          
                Union[str, int, float]
           | 
          
             The method used for imputing missing values. If a string, supported values are 'ffill' (forward fill) and 'bfill' (backward fill). If an int or float, missing values will be filled with the provided value.  | 
          required | 
          roll(window_sizes, stats, freq)
  Performs rolling window calculations on specified columns of a DataFrame.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
window_sizes | 
          
                List[int]
           | 
          
             A list of integers representing the window sizes for the rolling calculations.  | 
          required | 
stats | 
          
                List[Literal['mean', 'min', 'max', 'mlm', 'sum', 'std', 'cv']]
           | 
          
             A list of statistical measures to calculate for each rolling window. Supported values are: 
  | 
          required | 
freq | 
          
                str
           | 
          
             Offset alias supported by Polars.  | 
          required | 
          scale(use_mean=True, use_std=True, rescale_bool=False)
  Performs scaling and rescaling operations on the numeric columns of a DataFrame.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
use_mean | 
          
                bool
           | 
          
             Whether to subtract the mean from the numeric columns. Defaults to True.  | 
          
                True
           | 
        
use_std | 
          
                bool
           | 
          
             Whether to divide the numeric columns by the standard deviation. Defaults to True.  | 
          
                True
           | 
        
rescale_bool | 
          
                bool
           | 
          
             Whether to rescale boolean columns to the range [-1, 1]. Defaults to False.  | 
          
                False
           | 
        
          time_to_arange(eager=False)
  Coerces time column into arange per entity.
Assumes even-spaced time-series and homogenous start dates.
          trim(direction='both')
  Trims time-series in panel to have the same start or end dates as the shortest time-series.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
direction | 
          
                Literal['both', 'left', 'right']
           | 
          
             Defaults to "both". If "left" trims from start date of the shortest time series); if "right" trims up to the end date of the shortest time-series; or otherwise "both" trims between start and end dates of the shortest time-series  | 
          
                'both'
           | 
        
          yeojohnson(brack=(-2, 2))
  Applies the Yeo-Johnson transformation to numeric columns in a panel DataFrame.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
brack | 
          
                2 - tuple
           | 
          
             The starting interval for a downhill bracket search with optimize.brent. Note that this is in most cases not critical; the final result is allowed to be outside this bracket.  | 
          
                (-2, 2)
           |