plotting
          plot_backtests(y_true, y_preds, n_cols=2, last_n=DEFAULT_LAST_N, **kwargs)
  Given panel DataFrame of observed values y and backtests across splits y_pred,
returns subplots for each individual entity / time-series.
Note: if you have over 10 entities / time-series, we recommend using
the rank_ functions in functime.evaluation then df.head() before plotting.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
y_true | 
          
                DataFrame
           | 
          
             Panel DataFrame of observed values.  | 
          required | 
y_preds | 
          
                DataFrame
           | 
          
             Panel DataFrame of backtested values.  | 
          required | 
n_cols | 
          
                int
           | 
          
             Number of columns to arrange subplots. Defaults to 2.  | 
          
                2
           | 
        
last_n | 
          
                int
           | 
          
             Plot   | 
          
                DEFAULT_LAST_N
           | 
        
Returns:
| Name | Type | Description | 
|---|---|---|
figure |           
                Figure
           | 
          
             Plotly subplots.  | 
        
          plot_comet(y_train, y_test, y_pred, scoring=None, **kwargs)
  Given a train-test-split of panel data (y_train, y_test) and forecast y_pred,
returns a Comet plot i.e. scatterplot of volatility per entity in y_train against the forecast scores.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
y_train | 
          
                DataFrame
           | 
          
             Panel DataFrame of train dataset.  | 
          required | 
y_test | 
          
                DataFrame
           | 
          
             Panel DataFrame of test dataset.  | 
          required | 
y_pred | 
          
                DataFrame
           | 
          
             Panel DataFrame of forecasted values to score against   | 
          required | 
scoring | 
          
                Optional[metric]
           | 
          
             If None, defaults to SMAPE.  | 
          
                None
           | 
        
Returns:
| Name | Type | Description | 
|---|---|---|
figure |           
                Figure
           | 
          
             Plotly scatterplot.  | 
        
          plot_forecasts(y_true, y_pred, n_cols=2, last_n=DEFAULT_LAST_N, **kwargs)
  Given panel DataFrames of observed values y and forecasts y_pred,
returns subplots for each individual entity / time-series.
Note: if you have over 10 entities / time-series, we recommend using
the rank_ functions in functime.evaluation then df.head() before plotting.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
y_true | 
          
                DataFrame
           | 
          
             Panel DataFrame of observed values.  | 
          required | 
y_pred | 
          
                DataFrame
           | 
          
             Panel DataFrame of forecasted values.  | 
          required | 
n_cols | 
          
                int
           | 
          
             Number of columns to arrange subplots. Defaults to 2.  | 
          
                2
           | 
        
last_n | 
          
                int
           | 
          
             Plot   | 
          
                DEFAULT_LAST_N
           | 
        
Returns:
| Name | Type | Description | 
|---|---|---|
figure |           
                Figure
           | 
          
             Plotly subplots.  | 
        
          plot_fva(y_true, y_pred, y_pred_bench, scoring=None, **kwargs)
  Given two panel data forecasts y_pred and y_pred_bench,
returns scatterplot of benchmark scores against forecast scores.
Each dot represents a single entity / time-series.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
y_true | 
          
                DataFrame
           | 
          
             Panel DataFrame of test dataset.  | 
          required | 
y_pred | 
          
                DataFrame
           | 
          
             Panel DataFrame of forecasted values.  | 
          required | 
y_pred_bench | 
          
                DataFrame
           | 
          
             Panel DataFrame of benchmark forecast values.  | 
          required | 
scoring | 
          
                Optional[metric]
           | 
          
             If None, defaults to SMAPE.  | 
          
                None
           | 
        
Returns:
| Name | Type | Description | 
|---|---|---|
figure |           
                Figure
           | 
          
             Plotly scatterplot.  | 
        
          plot_panel(y, n_cols=2, last_n=DEFAULT_LAST_N, **kwargs)
  Given panel DataFrames of observed values y,
returns subplots for each individual entity / time-series.
Note: if you have over 10 entities / time-series, we recommend using
the rank_ functions in functime.evaluation then df.head() before plotting.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
y | 
          
                DataFrame
           | 
          
             Panel DataFrame of observed values.  | 
          required | 
n_cols | 
          
                int
           | 
          
             Number of columns to arrange subplots. Defaults to 2.  | 
          
                2
           | 
        
last_n | 
          
                int
           | 
          
             Plot   | 
          
                DEFAULT_LAST_N
           | 
        
Returns:
| Name | Type | Description | 
|---|---|---|
figure |           
                Figure
           | 
          
             Plotly subplots.  | 
        
          plot_residuals(y_resids, n_bins=None, **kwargs)
  Given panel DataFrame of residuals across splits y_resids,
returns binned counts plot of forecast residuals colored by entity / time-series.
Useful for residuals analysis (bias and normality) at scale.
Parameters:
| Name | Type | Description | Default | 
|---|---|---|---|
y_resids | 
          
                DataFrame
           | 
          
             Panel DataFrame of forecast residuals (i.e. observed less forecast).  | 
          required | 
n_bins | 
          
                int
           | 
          
             Number of bins.  | 
          
                None
           | 
        
Returns:
| Name | Type | Description | 
|---|---|---|
figure |           
                Figure
           | 
          
             Plotly histogram.  |